Silvestrini, B. \& Quadri, B. (1970). Eur. J. Pharmacol. 12, 231-235.
Sørensen, G. O., Mahler, L. \& Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119-126.

Stefanini, E., Fadda, F., Porceddu, M. L. \& Gessa, G. L. (1976). J. Pharm. Pharmacol. 28, 925-927.

Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1979). B35, 500-502

# Bis(triphenylmethyl) Peroxide 

# By Christopher Glidewell,* David C. Liles and David J. Walton <br> Chemistry Department, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland 

and George M. Sheldrick<br>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 10 October 1978; accepted 1 November 1978)


#### Abstract

C}_{38} \mathrm{H}_{30} \mathrm{O}_{2}\), triclinic, $P \overline{1}, a=10.809$ (3), $b=$ $9.062(2), c=8.852(2) \AA, \quad \alpha=115.47(1), \beta=$ $91.50(1), \gamma=112.98(1)^{\circ}, M_{r}=518.62, V=700.75$ $\AA^{3}, D_{c}=1.229 \mathrm{Mg} \mathrm{m}^{-3}, Z=1, \mu\left(\mathrm{Mo} K_{\mathrm{a}}\right)=0.04$ $\mathrm{mm}^{-1}$. The final $R$ for 2220 reflections is 0.0638 . The central COOC fragment is trans-planar with $\mathrm{C}-\mathrm{O}=$ 1.461 (2), $\mathrm{O}-\mathrm{O}=1.480$ (2) $\AA$, and a COO angle of 107.5 (2) ${ }^{\circ}$.


Introduction. The compound was prepared by the reaction of $\mathrm{Ph}_{3} \mathrm{CCl}$ with Zn amalgam in the presence of air; crystals were grown from benzene, and a crystal $0.20 \times 0.15 \times 0.10 \mathrm{~mm}$ was used for data collection on a Philips PW 1100 four-circle diffractometer with graphite-monochromated Mo $K \alpha$ radiation. The intensities of 2374 unique reflections in the hemisphere $\pm h$, $\pm k,+l$ having $3 \leq \theta \leq 30^{\circ}$ were measured with the $\omega-$ $2 \theta$ scan technique. Lorentz and polarization corrections were applied, but no correction was made for absorption.

The $E$ statistics suggested space group $P \overline{1}$, but attempts to solve the structure by direct methods with SHELX failed in both P1 and P1: the structure was eventually solved in $P \overline{1}$ with negative quartets (Sheldrick, 1978). The structure was refined by full-matrix least squares with complex neutral-atom scattering factors (Cromer \& Mann, 1968) and weights $w=$ $1 / \sigma^{2}(F)$ for 2220 unique reflections having $F_{0} \geq$ $6 \sigma\left(F_{o}\right)$. Anisotropic temperature factors were employed for the O and C atoms; H atom coordinates

[^0]0567-7408/79/020500-03\$01.00

Table 1. Atom coordinates ( $\times 10^{4}$, for $\mathrm{H} \times 10^{3}$ )

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| 0 | 4737 (1) | 4170 (2) | 4150 (2) |
| C(1) | 3309 (2) | 3722 (3) | 3509 (2) |
| C(11) | 3251 (2) | 5244 (3) | 3200 (3) |
| C(12) | 3472 (2) | 6906 (3) | 4592 (3) |
| C(13) | 3400 (2) | 8272 (3) | 4332 (3) |
| C(14) | 3109 (3) | 8027 (3) | 2694 (4) |
| C(15) | 2875 (3) | 6395 (4) | 1318 (4) |
| C(16) | 2951 (3) | 5013 (3) | 1561 (3) |
| $\mathrm{C}(21)$ | 2940 (2) | 1959 (2) | 1819 (2) |
| C (22) | 1636 (2) | 491 (3) | 1239 (3) |
| C(23) | 1304 (3) | -1089 (3) | -300 (3) |
| C(24) | 2269 (3) | -1221 (3) | -1261 (3) |
| C(25) | 3561 (3) | 219 (4) | -711(3) |
| C(26) | 3899 (2) | 1810 (3) | 823 (3) |
| C(31) | 2437 (2) | 3353 (3) | 4745 (2) |
| C(32) | 2768 (3) | 2624 (3) | 5708 (3) |
| C(33) | 1925 (3) | 2170 (3) | 6742 (3) |
| C(34) | 746 (3) | 2437 (4) | 6845 (4) |
| C(35) | 409 (3) | 3144 (3) | 5897 (4) |
| C(36) | 1234 (2) | 3592 (3) | 4846 (3) |
| H(12) | 362 (2) | 707 (3) | 579 (3) |
| H(13) | 357 (2) | 940 (3) | 531 (3) |
| H(14) | 310 (2) | 903 (3) | 255 (3) |
| H(15) | 273 (3) | 621 (3) | 17 (3) |
| H(16) | 284 (2) | 388 (3) | 56 (3) |
| H(22) | 95 (2) | 57 (3) | 190 (3) |
| H(23) | 36 (3) | -214 (3) | -67 (3) |
| H(24) | 204 (2) | -234(3) | -234 (3) |
| H(25) | 423 (2) | 17 (3) | -139 (3) |
| H(26) | 484 (3) | 289 (3) | 125 (3) |
| H(32) | 364 (3) | 250 (3) | 566 (3) |
| H(33) | 219 (2) | 166 (3) | 739 (3) |
| H(34) | 16 (2) | 216 (3) | 761 (3) |
| H(35) | -43 (2) | 330 (3) | 595 (3) |
| H(36) | 100 (3) | 411 (3) | 416 (3) |

© 1979 International Union of Crystallography
were refined, with a common isotropic temperature factor. The refinement converged to $R=\sum \Delta / \sum F_{o}=$ 0.0638 , and $R_{G}=\left(\sum w \Delta^{2} / \sum w F_{o}^{2}\right)^{1 / 2}=0.0568$. At each stage of the refinement the reduction in $R_{G}$ was significant at the $99.9 \%$ level (Hamilton, 1965). When the space group was relaxed to $P 1$, the reduction in $R_{G}$ was not significant at the $50 \%$ level, so $P 1$ can be rejected.

The final atom coordinates are in Table 1, the geometrical parameters of the central $\mathrm{C}_{3} \mathrm{COOCC}_{3}$ fragment in Table 2, and the parameters for the phenyl rings in Table 3. Fig. 1 shows the molecule and the numbering of the atoms.*

Discussion. The $\mathrm{C}-\mathrm{O}$ distance, 1.461 (2) $\AA$, is identical to the mean in $\left(\mathrm{Ph}_{3} \mathrm{C}\right)_{2} \mathrm{O}$ (Glidewell \& Liles, 1978), but significantly longer than that in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$, 1.416 (3) $\AA$ (Kimura \& Kubo, 1959). The O-O distance, 1.480 (2) $\AA$, is typical of those found in

* Lists of structure factors, anisotropic thermal parameters and geometrical parameters involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34024 ( 16 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

Table 2. Geometry of the central $\mathrm{C}_{3} \mathrm{COOCC}_{3}$ fragment
(a) Distances ( $\AA$ )

| $\mathrm{O}-\mathrm{O}^{\prime}$ | $1.480(2)$ | $\mathrm{C}(1)-\mathrm{C}(11)$ | $1.540(3)$ |
| :--- | ---: | :--- | :--- |
| $\mathrm{O}-\mathrm{C}(1)$ | $1.461(2)$ | $\mathrm{C}(1)-\mathrm{C}(21)$ | $1.538(3)$ |
| $\mathrm{O} \cdots \mathrm{C}(1)^{\prime}$ | $2.371(3)$ | $\mathrm{C}(1)-\mathrm{C}(31)$ | $1.523(3)$ |
| $(b)$ Angles $\left(^{\circ}\right)$ |  |  |  |
| $\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(11)$ | $110.6(1)$ | $\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(21)$ | $112.3(2)$ |
| $\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(21)$ | $99.5(1)$ | $\mathrm{C}(21)-\mathrm{C}(1)-\mathrm{C}(31)$ | $11.4(2)$ |
| $\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(31)$ | $109.9(2)$ | $\mathrm{C}(31)-\mathrm{C}(1)-\mathrm{C}(11)$ | $112.4(1)$ |
| $\mathrm{C}(1)-\mathrm{O}-\mathrm{O}^{\prime}$ | $107.5(2)$ | $\mathrm{C}(1)-\mathrm{O}-\mathrm{O}^{\prime}-\mathrm{C}(1)^{\prime}$ | 180.0 |



Fig. 1. The molecule of bis(triphenylmethyl) peroxide, showing the numbering of the atoms. H atoms have the same numbers as the C atoms to which they are bonded.

Table 3. Geometry within the phenyl rings

$i=1 \quad$| Ring (i) |
| :---: | :---: |
| $i=2$ |$\quad i=3 \quad$ Mean

(a) Distances $(\AA): \mathrm{C}(i j)-\mathrm{C}(i k)$
$j-k$

| $1-2$ | $1.397(3)$ | $1.389(3)$ | $1.394(3)$ | $1.393(3)$ |
| :--- | :--- | :--- | :--- | :--- |
| $2-3$ | $1.382(3)$ | $1.389(3)$ | $1.383(3)$ | $1.385(4)$ |
| $3-4$ | $1.377(4)$ | $1.372(3)$ | $1.385(4)$ | $1.378(5)$ |
| $4-5$ | $1.370(4)$ | $1.373(4)$ | $1.370(4)$ | $1.371(2)$ |
| $5-6$ | $1.390(3)$ | $1.391(3)$ | $1.382(3)$ | $1.388(4)$ |
| $6-1$ | $1.384(3)$ | $1.387(3)$ | $1.399(3)$ | $1.390(6)$ |

(b) Angles $\left(^{\circ}\right): \mathrm{C}(i j)-\mathrm{C}(i k)-\mathrm{C}(i l)$ or $\mathrm{C}(i j)-\mathrm{C}(i k)-\mathrm{C}(1)$ $j-k-l(1)$

| $6-1-2$ | $117 \cdot 7(2)$ | $118.4(2)$ | $118 \cdot 3(2)$ | $118.1(3)$ |
| :--- | :--- | :--- | :--- | :--- |
| $1-2-3$ | $120.9(2)$ | $120.7(2)$ | $120.3(2)$ | $120.6(3)$ |
| $2-3-4$ | $120.8(2)$ | $120.2(2)$ | $120.7(3)$ | $120.6(3)$ |
| $3-4-5$ | $118.9(2)$ | $119.9(2)$ | $119.4(3)$ | $119.4(4)$ |
| $4-5-6$ | $120.9(3)$ | $120 \cdot 3(2)$ | $120.6(3)$ | $120.6(3)$ |
| $5-6-1$ | $120.9(2)$ | $120.5(2)$ | $120.7(2)$ | $120.7(2)$ |
| $2-1-C(1)$ | $120.2(2)$ | $121.0(2)$ | $120.1(2)$ | $120.4(4)$ |
| $6-1-C(1)$ | $122.0(2)$ | $120.6(2)$ | $121.5(2)$ | $121.4(6)$ |

Table 4. Geometrical parameters in some molecular peroxides ( $X \mathrm{OOY}$ )

| $X$ | $Y$ | $r(\mathrm{O}-\mathrm{O})(\AA)$ | Dihedral angle ( ${ }^{\circ}$ ) | Reference |
| :---: | :---: | :---: | :---: | :---: |
| H | H | 1.453 (7) | 90.2 (6) | (a) |
| F | F | 1.217 (3) | 87.5 (5) | (b) |
| $\mathrm{CF}_{3}$ | H | 1.447 (3) | 95.0* | (c) |
| $\mathrm{CF}_{3}$ | F | 1.366 (11) | $97 \cdot 1$ (20) | (c) |
| $\mathrm{CF}_{3}$ | Cl | 1.447 (5) | 93.2 (23) | (c) |
| $\mathrm{CF}_{3}$ | $\mathrm{CF}_{3}$ | 1.419 (7) | 123.3 (13) | (d) |
| $\mathrm{Me}_{3} \mathrm{C}$ | $\mathrm{Me}_{3} \mathrm{C}$ | 1.480* | 165.8 (24) | (e) |
| $\mathrm{Me}_{3} \mathrm{Si}$ | $\mathrm{Me}_{3} \mathrm{Si}$ | 1.481 (8) | 143.5 (60) | (e) |
| $\mathrm{Ph}_{3} \mathrm{C}$ | $\mathrm{Ph}_{3} \mathrm{C}$ | 1.480 (2) | $180{ }^{+}$ | (f) |
| PhCO | PhCO | 1.46 (2) | 91 | (g) |
| $\mathrm{SF}_{5}$ | $\mathrm{SF}_{5}$ | 1.47 (3) | 107 (5) | (h) |
| $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{CO}$ | H | 1.44 | 133 | (i) |
| $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CO}$ |  | 1.478 | 146 | (j) |
| $\mathrm{O}_{3} \mathrm{~S}^{-}$ | $\mathrm{O}_{3} \mathrm{~S}^{-}$ | 1.46 | $180 \dagger$ | (k) |
| $\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{3+}$ | $\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}^{3+}$ | 1.47 | 146 | (l) |

References: (a) Busing \& Levy (1965); (b) Jackson (1962); (c) Marsden, Desmarteau \& Bartell (1977); (d) Marsden, Bartell \& Diodati (1977); (e) Käss, Oberhammer, Brandes \& Blaschette (1977); ( $f$ ) this work; $(g)$ Sax \& McMullen (1967); (h) Harvey \& Bauer (1954); (i) Belitskus \& Jeffrey (1965); (j) Sax, Beurskens \& Chu (1965); ( $k$ ) Zachariasen \& Mooney (1934); ( $l$ ) Shaeffer (1968).

* Parameter not refined.
$\dagger$ By symmetry.
molecular peroxides not containing an $\mathrm{O}-\mathrm{F}$ bond (Table 4). The mean C (aryl)-C(quaternary) distance, 1.533 (8) $\AA$, is not significantly different from those in $\left(\mathrm{Ph}_{3} \mathrm{C}\right)_{2} \mathrm{O}, 1.543$ (6) $\AA$ (Glidewell \& Liles, 1978), and $\mathrm{Ph}_{3} \mathrm{CH}, 1.524$ (23) $\AA$ (Riche \& Pascard-Billy, 1974), although it is somewhat shorter than that in the sterically crowded $\mathrm{Ph}_{4} \mathrm{C}, 1.550$ (3) $\AA$ (Robbins, Jeffrey, Chesick, Donohue, Cotton, Frenz \& Murillo, 1975).

The angle at $\mathrm{O}, 107.5(2)^{\circ}$, is markedly smaller than that in $\left(\mathrm{Ph}_{3} \mathrm{C}\right)_{2} \mathrm{O}, 127.9(1)^{\circ}$, which was ascribed to repulsive interactions between the two $\mathrm{Ph}_{3} \mathrm{C}$ groups (Glidewell \& Liles, 1978). A similar substantial reduction in interbond angle at O has been observed on going from $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2}$ (Csákvári, Wagner, Gömöry, Mijlhoff, Rozsondai \& Hargittai, 1976) to $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{O}_{2}$ (Käss, Oberhammer, Brandes \& Blaschette, 1977): in this case also the wider angle in the oxo compound can be ascribed to steric factors.

The angle between the two COO planes is $180^{\circ}$; such a large dihedral angle occurs only rarely in peroxo compounds. In the simplest peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, the dihedral angle in the solid state is $90.2(6)^{\circ}$ (Busing \& Levy, 1965), but the barrier to rotation about the O-O bond is very small, being $4.62 \mathrm{~kJ} \mathrm{~mol}^{-1}$ towards the trans conformation and $29.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ towards the cis (Hunt, Leacock, Peters \& Hecht, 1965). However, marked deviations from a dihedral angle of ca $90^{\circ}$ usually occur only as a consequence of either hydrogen bonding or steric repulsion (Table 4), although the value of $180^{\circ}$ in $M_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\left(M=\mathrm{NH}_{4}\right.$ or Cs) (Zachariasen \& Mooney, 1934) has no obvious interpretation.

We thank the SRC for support.

## References

Belitskus, D. \& Jeffrey, G. A. (1965). Acta Cryst. 18, 458-463.
Busing, W. R. \& Levy, H. A. (1965). J. Chem. Phys. 42, 3054-3059.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Csákvárı, B., Wagner, Z., Gömöry, P., Mijlhoff, F. C., Rozsondal, B. \& Hargittal, I. (1976). J. Organomet. Chem. 107, 287-294.
Glidewell, C. \& Liles, D. C. (1978). Acta Cryst. B34, 696-698.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Harvey, R. B. \& Bauer, S. H. (1954). J. Am. Chem. Soc. 76, 859-864.
Hunt, R. H., Leacock, R. A., Peters, C. W. \& Hecht, K. T. (1965). J. Chem. Phys. 42, 1931-1946.

Jackson, R. H. (1962). J. Chem. Soc. pp. 4585-4592.
Käss, D., Oberhammer, H., Brandes, D. \& Blaschette, A. (1977). J. Mol. Struct. 40, 65-75.

Kimura, K. \& Kubo, M. (1959). J. Chem. Phys. 30, 151158.

Marsden, C. J., Bartell, L. S. \& Diodati, F. D. (1977). J. Mol. Struct. 39, 253-262.
Marsden, C. J., Desmarteau, D. D. \& Bartell, L. S. (1977). Inorg. Chem. 16, 2359-2366.

Riche, C. \& Pascard-Billy, C. (1974). Acta Cryst. B30, 1874-1876.
Robbins, A., Jeffrey, G. A., Chesick, J. P., Donohue, J., Cotton, F. A., Frenz, B. A. \& Murillo, C. A. (1975). Acta Cryst. B31, 2395-2399.
Sax, M., Beurskens, P. \& Chu, S. (1965). Acta Cryst. 18, 252-258.
Sax, M. \& McMullen, R. K. (1967). Acta Cryst. 22, 281288.

Shaeffer, W. P. (1968). Inorg. Chem. 7, 725-731.
Sheldrick, G. M. (1978). Unpublished.
Zachariasen, W. H. \& Mooney, R. C. L. (1934). Z. Kristallogr. 88, 63-81.

Acta Cryst. (1979). B35, 502-504

# The meso Condensation Dimer from 2-(3-Bromopropyl)-6-hydroxy-2-methyl-1-indanone 

By Peter Murray-Rust and Judith Murray-Rust<br>Department of Chemistry, University of Stirling, Stirling FK 9 4LA, Scotland

(Received 17 October 1978; accepted 6 November 1978)


#### Abstract

C}_{26} \mathrm{H}_{28} \mathrm{O}_{4}, M_{r}=404 \cdot 5\), triclinic, $P \overline{1}, a=$ 6.04 (1), $b=8.73$ (2), $c=10.65$ (4) $\AA, 九=99.90$ (3), $\beta=95 \cdot 28$ (3), $\gamma=69.33$ (3) ${ }^{\circ}$ from diffractometer measurements (Mo $K \bar{\pi}$ radiation). $V=516 \AA^{3}, Z=1$, $D_{c}=1.296 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=216, \mu=0.049 \mathrm{~mm}^{-1}$. The molecule was shown to be the meso isomer.


Introduction. The title compound was recrystallized from chloroform.

Weissenberg and precession photographs indicated a triclinic space group. Data were collected for $0-6 \mathrm{kl}$

0567-7408/79/020502-03\$01.00
with $\theta_{\max }=27.5^{\circ}$ on a Stoe STADI-2 diffractometer (graphite-monochromated Mo $K_{\bar{\pi}}$ radiation). This gave 2175 data of which 1843 unique reflexions with $I>$ $3 \sigma(I)$ were used in subsequent calculations. Lorentz and polarization corrections (but none for extinction or absorption) were applied, and the data were scaled by a Wilson plot. The structure was solved by direct methods with SHELX 76 (Sheldrick, 1976), which was used for all calculations. Complex neutral-atom scattering factors were taken from International Tables for $X$ ray Crystallography (1974). Weighted full-matrix least© 1979 International Union of Crystallography


[^0]:    * To whom correspondence should be addressed.

